Science|A Worm’s Hidden Map for Growing New Eyes

Trilobites

When a planarian loses its eyes, cellular guides connect new ones to its brain so it can see again.

Credit…Lucila Scimone/Whitehead Institute

Planarians have unusual talents, to say the least. If you slice one of the tiny flatworms in half, the halves will grow back, giving you two identical worms. Cut a flatworm’s head in two, and it will grow two heads. Cut an eye off a flatworm — it will grow back. Stick an eye on a flatworm that lacks eyes — it’ll take root. Pieces as small as one-279th of a flatworm will turn into new, whole flatworms, given the time.

This process of regeneration has fascinated scientists for more than 200 years, prompting myriad zany, if somewhat macabre, experiments to understand how it is possible for a complex organism to rebuild itself from scratch, over and over and over again. In a paper published Friday in Science, researchers revealed a tantalizing glimpse into how the worms’ nervous systems manage this feat.

Specialized cells, the scientists report, point the way for neurons stretching from newly grown eyes to the brain of the worm, helping them connect correctly. The research suggests that cellular guides hidden throughout the planarian body may make it possible for the worm’s newly grown neurons to retrace their steps. Gathering these and other insights from the study of flatworms may someday help scientists interested in helping humans regenerate injured neurons.

María Lucila Scimone, a researcher at M.I.T.’s Whitehead Institute for Biomedical Research, first noticed these cells while studying Schmidtea mediterranea, a planarian common to bodies of freshwater in Southern Europe and North Africa. During another experiment, she noted that they were expressing a gene involved in regeneration.

“In every animal she looked at, she’d see just a couple of these, right n

Read More